Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372977

RESUMO

The morphology of the nucleus is roughly spherical in most eukaryotic cells. However, this organelle shape needs to change as the cell travels through narrow intercellular spaces during cell migration and during cell division in organisms that undergo closed mitosis, i.e., without dismantling the nuclear envelope, such as yeast. In addition, the nuclear morphology is often modified under stress and in pathological conditions, being a hallmark of cancer and senescent cells. Thus, understanding nuclear morphological dynamics is of uttermost importance, as pathways and proteins involved in nuclear shaping can be targeted in anticancer, antiaging, and antifungal therapies. Here, we review how and why the nuclear shape changes during mitotic blocks in yeast, introducing novel data that associate these changes with both the nucleolus and the vacuole. Altogether, these findings suggest a close relationship between the nucleolar domain of the nucleus and the autophagic organelle, which we also discuss here. Encouragingly, recent evidence in tumor cell lines has linked aberrant nuclear morphology to defects in lysosomal function.


Assuntos
Saccharomyces cerevisiae , Vacúolos , Núcleo Celular/metabolismo , Mitose , Nucléolo Celular/metabolismo
2.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35961781

RESUMO

The ribosomal DNA (rDNA) array of Saccharomyces cerevisiae has served as a model to address chromosome organization. In cells arrested before anaphase (mid-M), the rDNA acquires a highly structured chromosomal organization referred to as the rDNA loop, whose length can double the cell diameter. Previous works established that complexes such as condensin and cohesin are essential to attain this structure. Here, we report that the rDNA loop adopts distinct presentations that arise as spatial adaptations to changes in the nuclear morphology triggered during mid-M arrests. Interestingly, the formation of the rDNA loop results in the appearance of a space under the loop (SUL) which is devoid of nuclear components yet colocalizes with the vacuole. We show that the rDNA-associated nuclear envelope (NE) often reshapes into a ladle to accommodate the vacuole in the SUL, with the nucleus becoming bilobed and doughnut-shaped. Finally, we demonstrate that the formation of the rDNA loop and the SUL require TORC1, membrane synthesis and functional vacuoles, yet is independent of nucleus-vacuole junctions and rDNA-NE tethering.


Assuntos
Proteínas de Saccharomyces cerevisiae , Vacúolos , Anáfase , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
3.
Sci Rep ; 11(1): 14940, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294749

RESUMO

The key role of Topoisomerase II (Top2) is the removal of topological intertwines between sister chromatids. In yeast, inactivation of Top2 brings about distinct cell cycle responses. In the case of the conditional top2-5 allele, interphase and mitosis progress on schedule but cells suffer from a chromosome segregation catastrophe. We here show that top2-5 chromosomes fail to enter a Pulsed-Field Gel Electrophoresis (PFGE) in the first cell cycle, a behavior traditionally linked to the presence of replication and recombination intermediates. We distinguished two classes of affected chromosomes: the rDNA-bearing chromosome XII, which fails to enter a PFGE at the beginning of S-phase, and all the other chromosomes, which fail at a postreplicative stage. In synchronously cycling cells, this late PFGE retention is observed in anaphase; however, we demonstrate that this behavior is independent of cytokinesis, stabilization of anaphase bridges, spindle pulling forces and, probably, anaphase onset. Strikingly, once the PFGE retention has occurred it becomes refractory to Top2 re-activation. DNA combing, two-dimensional electrophoresis, genetic analyses, and GFP-tagged DNA damage markers suggest that neither recombination intermediates nor unfinished replication account for the postreplicative PFGE shift, which is further supported by the fact that the shift does not trigger the G2/M checkpoint. We propose that the absence of Top2 activity leads to a general chromosome structural/topological change in mitosis.


Assuntos
Cromossomos Fúngicos/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Ciclo Celular , Segregação de Cromossomos , DNA Topoisomerases Tipo II/deficiência , Eletroforese em Gel de Campo Pulsado , Técnicas de Inativação de Genes , Mitose , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...